c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
↳ QTRS
↳ DependencyPairsProof
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
C1(c1(c1(b1(x)))) -> C1(x)
A2(1, x) -> C1(b1(x))
B1(c1(b1(c1(x)))) -> A2(1, x)
A2(1, x) -> B1(x)
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
C1(c1(c1(b1(x)))) -> B1(c1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
C1(c1(c1(b1(x)))) -> C1(x)
A2(1, x) -> C1(b1(x))
B1(c1(b1(c1(x)))) -> A2(1, x)
A2(1, x) -> B1(x)
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
C1(c1(c1(b1(x)))) -> B1(c1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C1(c1(c1(b1(x)))) -> C1(x)
B1(c1(b1(c1(x)))) -> A2(1, x)
C1(c1(c1(b1(x)))) -> B1(c1(x))
Used ordering: Polynomial Order [17,21] with Interpretation:
A2(1, x) -> C1(b1(x))
A2(1, x) -> B1(x)
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
POL( C1(x1) ) = max{0, x1 - 2}
POL( c1(x1) ) = x1 + 1
POL( b1(x1) ) = x1 + 1
POL( A2(x1, x2) ) = max{0, x1 + x2 - 2}
POL( 1 ) = 1
POL( B1(x1) ) = max{0, x1 - 1}
POL( 0 ) = 2
POL( a2(x1, x2) ) = x2 + 2
a2(0, x) -> c1(c1(x))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(1, x) -> c1(b1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
A2(1, x) -> C1(b1(x))
A2(1, x) -> B1(x)
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(x)
A2(0, x) -> C1(c1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A2(1, x) -> B1(x)
A2(0, x) -> C1(x)
Used ordering: Polynomial Order [17,21] with Interpretation:
A2(1, x) -> C1(b1(x))
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(c1(x))
POL( A2(x1, x2) ) = x2 + 1
POL( B1(x1) ) = max{0, x1 - 1}
POL( C1(x1) ) = max{0, x1 - 1}
POL( b1(x1) ) = x1 + 2
POL( c1(x1) ) = x1 + 2
POL( a2(x1, x2) ) = x1 + x2 + 2
POL( 1 ) = 2
POL( 0 ) = 2
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A2(1, x) -> C1(b1(x))
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
B1(c1(b1(c1(x)))) -> A2(0, a2(1, x))
A2(0, x) -> C1(c1(x))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
A2(1, x) -> C1(b1(x))
C1(c1(c1(b1(x)))) -> A2(1, b1(c1(x)))
c1(c1(c1(b1(x)))) -> a2(1, b1(c1(x)))
b1(c1(b1(c1(x)))) -> a2(0, a2(1, x))
a2(0, x) -> c1(c1(x))
a2(1, x) -> c1(b1(x))